
A Parallel Algorithm for Optimal Task
Assignment in Distributed Systems

Ishfaq Ahmad and Muhammad Kafil
Department of Computer Science

The Hong Kong University of Science and Technology, Hong Kong.

Abstract'
An efficient assignment of tasks to the processors is

imperative for achieving a fast job turnaround time in a
parallel or distributed enviornment. The assignment
problem is well known to be NP-complete, except in a few
special cases. Thus heuristics are used to obtain
suboptimal solutions in reasonable amount of time. While
a plethora of such heuristics have been documented in the
literature, in this paper we aim to develop techniques for
finding optimal solutions under the most relaxed
assumptions. We propose a best-first search based parallel
algorithm that generates optimal solution for assigning an
arbitrary task graph to an arbitrary network of
homogeneous or heterogeneous processors. The parallel
algorithm running on the Intel Paragon gives optimal
assignments for problems of medium to large sizes. We
believe our algorithms to be novel in solving an
indispensable problem in parallel and distributed
computing.

Keywords: Best-first search, parallel processing, task
assignment, mapping, distributed systems.

1 Introduction
Given a parallel program represented by a task graph

and a network of processors also represented as a graph,
the problem of assigning tasks to processors is known as
the allocation problem or mapping problem [l]. In this
problem, the assignment of tasks to processors is done in a
static fashion, and the main goal is to assign equal amount
of load to all the processors and reduce the overhead of
interactjon among them. The problem, however, is a well
known to be NP-hard [5], and has been a focus of attention
due to its importance and complexity. A considerable
amount of research effort using a variety of techniques has
been reported in the literature.

The assignment problem is an optimization problem,
and the cost function to be optimized depends on the
assumptions made about the application model and
hardware details (system topology, communication
bandwidth, and the possibility of overlapping different
functions). The system may be a parallel machine or a
network of workstations connected as a virtual parallel
machine (such as in the computing model o f PVM or
MPI). A heterogeneous system (i.e., the processors are of

1. This research was supported by the Hong Kong Research Grants
Council under contract number HKUST 619/94E.

different speeds) adds more constraints to the assignment
problem. In general, without making strict assumptions,
the assignment algorithm can be computationally very
extensive.

The approaches used to solve the task assignment
problem for optimal or suboptimal solutions can be
classified as graph theoretic [13 1141, simulated annealing
[8], genetic techniques [6] , [7], solution space enumeration
and search [131 [151, mathematical programming [1 I], and
heuristics [3] , [9]. Most of the reported solutions are based
on heurtistics, and optimal solutions exist only for
restricted cases or small problem sizes.

The contribution of this paper is a best-first search-
based parallel algorithm that generates optimal solution for
assigning an arbitrary task graph to an arbitrary network of
homogeneous or heterogeneous processors. The algorithm
running on the Intel Paragon gives optimal mappings with
a good speed-up.

The rest of this paper is organized as follows. In the
next section, we define the assignment problem. In Section
3, we give an overview of the A* search technique which
is the basis of our proposed algorithm. In Section 4, we
present the proposed algorithm. Section 5 includes the
experimental results, and the last section concludes the
paper.

2 Problem Definition
A parallel program can be partitioned into a set of m

communicating tasks represented by an undirected graph
GT = (VT, ET) where VT is the set of vertices, { t I , tz,.., tm} ,
and ET is a set of edges labelled by the communication
costs between the vertices. The interconnection network of
n processors, (p,,p2,..,pn} is represented by an n*n matrix
L, where an entry Lv is 1 if the processors i and j are
connected, and 0 otherwise.

A task ti from the set VT can be executed on any one of
the n processors of the system. Each task has an execution
cost associated with it on a given processor. The execution
costs of the tasks are given by a matrix X; where Xi, is the
execution cost of task i on processor p . When two tasks tl
and t, executing on two different processors need to
exchange data, a communications cost will be incurred.

The communication among tthe asks is represented by
a matrix C, where C,, is the communication cost between
task i andj if they reside on two different processors. The
load on a processor is a combination of all the execution

284
0-8186-7876-3/96 $10.00 0 1997 IEEE

and communication costs associated with the tasks
assigned to it. The total completion time of the entire
program will be the time needed by the heaviest loaded
processor.

Task assignment problem is to find a mapping of the
set of m tasks to n processors such that the total completion
time is minimized. Mapping or assignment of tasks to
processors is given by a matrix A, where Ai, is 1 if task i is
assigned to processor p and 0 otherwise. The load on a
processor p is given by

m n m m

t 2

t3

ta

(P f 4)

The first part of the equation is the total execution cost
of the tasks assigned to processor p, and second part is the
communication overhead on p .

In order to find the processor with the heaviest load, the
load on each of the n processors needs to be computed. The
optimal assignment now will be the one which results in
the minimum load on the heaviest loaded processor among
all the assignments. There are nm possible assignments,
and finding the optimal assignment is known to be an NP-
hard problem [5].

3 Overview of the A* Technique

16 13 6

5 4 3

10 9 7

A* is a bestfirst search algorithm [101 which has been
used to solve optimization problems in artificial
intelligence as well as other areas. The algorithm
constructs the problem as a search tree. It then searches the
nodes of the tree starting from the root called the start node
(usually a null solution). Intermediate nodes represent the
partial solutions while the complete solutions or goals are
represented by the leaf nodes. Associated with each node
is a cost which is computed by a cost function$

The nodes are ordered for search according to this cost,
that is, a node with the minimum cost is searched first. The
value off for a node n is computed as fln) = g(n) + h(n)
where g(n) is the cost of the search path from the start node
to the current node n; h(n) is a lower bound estimate of the
path cost from node n to the goal node (solution).

The algorithm maintains a sorted list of nodes
(according to thefvalues of the nodes) and always selects
a node with the best cost for expansion. Expansion of a
node is to generate all of its successors or children. Since
the algorithm always selects the best cost node, it
guarantees an optimal solution.
3.1 The Sequential Approach

In this study we will use the A* technique for
assignment problem and call it the Optimal Assignment
with Sequential Search (OASS) algorithm. The OASS
algorithm is described as follows:

(1) Build initial node s and insert it into the list OPEN
(2) Setfls) = 0
(3) Repeat
(4)
(5) if (n o Solution)
(6) Generate successors of n
(7)
(8)
(9)
(1 0)
(1 1)
(12) end for
(13) end if
(14)if (n = Solution)
(15)
(16)UntiI (n is a Solution) or (OPEN is empty)

Shen and Tsai [13] formulated a state-space search
algorithm for optimal assignments. In this formulation
each node in the search tree represents an partial
assignment and a goal node represents a complete
assignment. The algorithm A* is then applied to traverse
the search space.

A subsequent study by Ramakrishnan [131 showed that
the order in which tasks are considered for allocation has a
great impact on the performance of the algorithm (for the
cost function used)Their study indicated that a significant
performance improvement can be achieved by a careful
ordering of tasks. They proposed a number of heuristics
out of which the so called minimar sequencing heuristic
has been shown to perform the best.

Given a set of 5 tasks, (to, tl, t2, t3, t4} and a set of 3
processors (po, pl, p2) as shown in Figure 1, the resulting

Select the node n with smallestfvalue.

for each successor node n ’ do
if (n’ is not at the last level in the search tree)

else f ln ’) = g(n ’)
Insert n’ into OPEN

fln ’) = g(n ’) + h(n ’)

Report the solution and Stop

Processor graph

Figure 1: An example task graph and a processor
and the network, execution costs of tasks on
various processors.

285

t3 --> pl
t4 --> p2 Figure 2: Search tree for the example problem.

(nodes generated = 39, nodes expanded = 13).

search trees is given in Figure 2. A node in the search to toPo (y)xxxx,)
tree the partial assignment Of tasks to to 30. The g(n) in this case equals 15 which is the cost of
PrOCeSSorSi and the Of f (cost Of partial executing to on po. The h(n) in this case also equals 15

The Of tasks to which is the sum of minimum of the execution or
P*ocessors is indicated by an m digit string ’a@l***umm- communication costs of tI and t4 (tasks communicating
1’. where ai (5 * - represents the processor (O with to). The costs of assigning to to p 1 (26) and to to p z
to n - 1 1 to which ith task has A (24) are calculated in a similar fashion. Theses three nodes
partial assignment means that e tasks are are inserted to the list OPEN. Since 24 is the minimum
unassigned; the value of ai equ ’x’ indicates that cost, the node ‘ 2 x x ~ ’ is selected for expansion.The
ith task has not b e n assigned Each level Of the search continues until the node with the complete
tree corresponds to a task, thus acing an ‘x’ value assi (‘20112’) is selected for expansion. At this
in the assignment string with some ~rocessor poi his is the node with a complete assignment and
number. Node expansion is to add the assignment of the um costs, it is the goal node. Notice that all
a new task to the partial assignment. n u s the depth ass strings are unique. A total of 39 nodes are
(d) of the search tree is to the number Of tasks generated and 13 nodes are expanded. In
m/ and node Of the tree can have a maximum Of exhaustive search will generate nm = 243 nod
n (no of processors) successors. find the optimal solution. The minimax sequence

nassigned tasks generated is {to, tl, t.2, t4, t31. therefore, t4 has been
‘XXXXX’ . For example i locations of to considered before t3.

(‘2XXXX’) are considered 4 The Parallelizing Approach

in the total costfin)

The root node includes the set of

to po (‘ O x x x x ‘) , to to

assignments at the first level of the tree. The assignment of
To distinguish the processors on which the parallel task

286

assignment algorithm is running from the processors in the
problem domain, we will denote the former with the
abbreviation PE (processing element which in our case is
the Intel Paragon processor). We call our parallel
algorithm the Optimal Assignment with Parallel Search
(OAPS) algorithm. First we describe the initial
partitioning and dynamic load balancing strategies.
4.1 Initial Partitioning

Initially the search space is divided statically based on
the number of processing elements (PES) P in the system
and the maximum number of successors S of a node in the
search tree. There could be three situations: Case 1) P< S:
Each PE will expand only the initial node which results in
S new nodes. Each PE will get one node and get additional
nodes in Round Robin (RR) fashion. Case 2) P = S: Only
initial node will be expanded and each PE will get one
node. Case 3) P > S: Each PE will keep expanding nodes
starting from the initial node until the number of nodes in
the list are greater than or equal to P. List is sorted in
increasing order of cost values of the nodes. First node in
the list will go to PE,, second node will go to PEp, third
node goes to PE2,4th node goes to PE,,-, and so on. Extra
nodes will be distributed using RR. (Although there is no
guarantee that a best cost node will lead to good cost node
after some expansions but still algorithm tries to initially
distribute the good nodes as evenly as possible among the
PES). If a solution is found during this process, the
algorithm will terminate. Note that there is no master PE
which generates first the nodes and then distribute among
other PES.
4.2 Dynamic Load Balancing

If there is no communication between the PES after the
initial static assignment, some of them may work on good
part of the search space, while others may expand
unnecessary nodes (the nodes which the serial algorithm
will not expand). This will result in a poor speed up. To
avoid this, PES need to communicate to share the best part
of the search space and to avoid unneccessary work. In our
formulation, a PE achieves this explicitly using a round
robin (RR) communication strategy within its
neighbourhood, and implicitly by broadcasting its solution
to all PES.

In steps 13-16 of the algorithm, a PE periodically
(when OPEN increases by a threshold U) selects a
neighbour in RR fashion and then sends its best node to
that neighbour. This will achieve the sharing of best part of
the search space within neighbourhood. Aside from this
load balancing, a PE also broadcast its solution (when it
finds one) to all PES. This will help in avoiding the
unnecessary work for a PE which is working on the bad
part of the search space. Since once a node receives a better
cost solution than its current best node, it will stop
expanding the unnecessary nodes. A solution is
broadcasted only if its cost i s better than an earlier solution
received from any other PE. The OAPS algorithm is
described below:

The OAPS Algorithm:
(1) Init- Partition()
(2) SetUp-Neighborhood()
(3) Repeat
(4)
(5) if (a Solution found)
(6)
(7)
(8) else
(9)
(10) end if
(11) Record the Solution and Stop
(12) end if
(1 3) If (OPEN’S length increases by a threshold U)
(14) Select a neighbor PE j using RR
(1 5) Send the current best node from OPEN to j
(16) end if
(17) If (Received a node from a neighbor)
(18) Insert it to OPEN
(19) if (Received a Solution from a PE)
(20) Insert it to OPEN
(21) if (Sender is a neighbor)
(22)
(23) endif
(24)Until (OPEN is empty) OR (OPEN is full)

Given an initial partitioning, every PE first sets up its
neighbourhood to find out which PES are in its neighbor.
Some initial nodes are generated for each PE and then
starting from initial nodes every PE will run some
iterations of sequential A*. PES then interact with each
other for exchanging their best nodes and to broadcast their
solutions. When a PE finds a solution, it records it into a
common file opened by all PES. A PE which finds the
solution does not expand nodes any further and waits to
receive the solution from other PES. Finally, the best
solution is the solution with the minimum costs among all
PES.

To illustrate the operation of the OAPS algorithm, we
use the same example that was used earlier for the
sequential assignment algorithm. This operation is shown
in Figure 3. Here we assume that the parallel algorithm
runs on three PES connected together as a linear chain, Le,
PEo and PE2 have one neighbour PEI, while PE1 has two
neighbours since it is in the middle. First, three nodes are
generated as in the sequential case. Then through the initial
partitioning, these nodes are assigned to 3 PES. Each PE
then goes through a number of steps. In each step, there are
two phases: the expansion phase and the communication
phase. In the expansion phase, a PE sequentially expands
its nodes (the newly created nodes are shown with thick
borders). It will keep on expanding until it reaches the
threshold (U) - this is set to be 3 in this example. In the
communication phase, a PE selects a neighbour and then
sends its best cost node to it. The selection of neighbours
is in a RR fashion. In the example, the exchange of the best
cost nodes among the neighbours is shown by the dashed
arrows. In the 5th step, PE1 finds its solution, broadcasts it

Expand the best cost node from OPEN

if (it’s better than previously received Solutions)
Broadcast the Solution to all PES

Inform neighbors that I am done

Remove this from neighborhood list

287

to other PES and then stops. In the final step, PE0 also
broadcasts (not shown here for the sake of simplicity) its
solution to PE2 which finally records its solution and stop.

5 Experimental Results
For experiments we used task graphs with 10-28 nodes

with 5 different values of (communication-to-computation
ratio) CCR and processor graphs of 4 nodes connected in
3 different topologies. For the OAPS algorithm, we used 2,
4,8, and 16 Paragon PES.
5.1 Workload Generation

To test the proposed sequential and parallel algorithms,
we generated a library of task graphs as well as 3 processor
topologies. In distributed systems, there is usually a
number of process groups with heavy interaction within
the group, and almost no interaction with processes outside
the group [2] . So, using this intuition, first we generated a
number of primitive task graph structures such as pipeline,
ring, server, and interference graphs of 2 to 8 nodes.

Complete task graphs were generated by randomly
selecting these primitives structures and combining them
until the desired number of tasks are reached. This is done
by first selecting a primitive graph and then combining it
with a newly selected graph by a link labelled 1; the last
node is connected back to the first node. To generate the
execution costs for the nodes, 0.1,0.2,1 .O, 5.0 and 10.0 are
used as communication to cost ratios (CCR). Since we are
assuming the processors to be heterogeneous
(homogeneous processors are a special case of
heterogeneous processors), the execution cost varies from
processor to processor in the execution cost matrix (X) but
the average remains the same. These costs are generated in
the following manner. For example, if the total
communication cost (sum of the cost of all of the edges
connected to this task) of task i is 16 and CCR used is 0.2
then, average execution cost of i will be, 16 /0.2 = 80.
5.2 Speed-up Using Parallel Algorithm

algorithm using various number
speedup is defined as the running time of the serial
algorithm over the running time of the parallel algorithm.
It is observed that the speedup increases with an increase
in problem size. Also the problems with CCR equal to 0.1
and 0.2 give good speedup in most of the cases, since the
running time of serial algorithm is longer compared to
larger CCRs. Table 1 presents the speedup for fully-
connected topology of 4 processors with CCR equal to 0.1.
Second column is the running time of the serial algorithm
while third, fourth and fifth columns are the speed up of the
parallel algorithm over serial one for 2, 4, 8 and 16
Paragon PES, respectively. Bottom row of the table is the
average speedup of all the tas raphs considered. The
values of average speedup for
line topoIogies are shown graphica

This sub-section discusses the spe

~

288

6 Conclusions
In this paper, we proposed a aparallel algorithm for

optimal assignments of tasks to processors. We considered
the problem under most relaxed assumption such as
arbitrary task graph including arbitrary costs on the nodes
and edges of the graph, and processors connected through
an interconnection network. Our algorithm can be used for
homogeneous or heterogeneous processors although in
this paper we only considered the heterogeneous cases. We
believe that to the best of our knowledge, ours is the first
attempt in designing a parallel algorithm for the optimal
task-to-processor assignment problem. There are a number
of further studies that are required to understand the
behavior of the parallel algorithm and some possible fine
improvements. We are currently exploring these
possibilities.
References

[11 S. H. Bokhari, “On the Mapping Problem,” IEEE Trans. on
Computers vol. C-30, March 1981, pp. 207-214.

[2] T. Bultan and C. Aykanat, “A new heuristic based on mean
field annealing,” Joumal of Parallel and Distributed
Computing, vol. 16, no. 4, pp 292-305, Dec 1992.

[3] V. Chaudhary and J. K. Aggarwal, “A generalized scheme
for mapping parallel algorithms,” IEEE Trans. on Parallel
and Distributed Systems, vol. 4, no. 3, Mar 1993.

. Garey and D. S. Johnson, Computers and
ctability: A Guide to the Theory of NP-completeness,

(Freeman, San Francisco, CA, 1979).
[5] D. E. Goldberg, “Genetic algorithms in search,

optimization, and Machine leaming,” (Addison, Wesely,
Reading, MA 1989)

[6] S. Hurley, “Taskgraph Mapping Using a Genetic
Algorithm: A comparision of Fitness Functions,” Parallel
Computing, vol. 19, pp. 1313-1317, NOV 1993.

[7] V. Mary Lo, “Heuristic Algorithms for Task Assignment in
Distributed Systems,” IEEE Trans on Computers. vol37, no
11, Nov1988.

[8] P.-Yio R. Ma, E. Y. S Lee, “A Task Allocation Model for
Distributed Computing Systems,”IEEE Tram on
Computers, vol. c-31, no. 1, Jan. 1982.

[9] N. J. Nilson, Problem Solving Methods in Artificial
Intellegence. New York McGraw-Hill, 197 1.

[IO] S. Ramakrishnan, H. Chao, and L.A. Dunning, “A Close
Look at Task Assignment in Distributed Systems,” IEEE

[l l] C.-Ch. Shen and W.-H. Tsai, “A Graph Matching Approach
to Optimal Task Assignment in Distributed Computing
System Using a Minimax Criterion,” IEEE Trans on
Computers, vol. c-34, no. 3, pp. 197-203, March 1985.

[12] H. S . Stone, “Multiprocessor Scheduling with the aid of
Network Flow Algorithms,” IEEE Trans. Software
Engineering, SE-3, vol. 1. pp. 85-93, Jan 1977.

1131 J. B. Sinclair, “Efficient Computation of Optimal
Assignments for Distributed Tasks,” Journal of Parallel and
Distributed Computing, vol. 4, 1987, pp. 342-362.

INFOCOM ‘91, pp. 806-812, 1991.

PE1 PE2 PE0

expansion I I +
0

0

0

0 +
stop

expansion 4
communication

0

expansion
0 4 -

:ioning

Broadcast solution 0 + and pirJ
Stop

Figure 3: The operation of the parallel assignment algorithm using three PES.

289

Table 1 : Speedup with the parallel algorithm using fully-connected topology (CCR=O. 1).

I

Proc topology = fully
connected

Proc topology = ring

10

8

U 4 6
CD
a 4 P

2

0

rn

0.1 0.2 1 5 10

Pr

7

I PEs=2
PEs=4
I PEs=8
0 PEs=16

I

Figure 4: Average speedup of the parallel algorithm.

290

